Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Viral Immunol ; 37(3): 139-148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574260

RESUMO

Goose astrovirus type 2 (GAstV-2) is a novel pathogen causing visceral gout in goslings; it not only causes necrosis of renal epithelial cells but also causes spleen damage, indicating that GAstV-2 induces immunosuppression in goslings. However, to date, the interaction between GAstV-2 and immune cells remains unclear. In this study, peripheral blood lymphocytes and macrophages were isolated from goslings without GAstV-2 infection and then inoculated in vitro with GAstV-2, and the virus localization in the lymphocytes and macrophages, proliferation and apoptosis of lymphocytes, and phagocytic activity, reactive oxygen species (ROS) and nitric oxide (NO) production, and cell polarity in macrophages were determined. The results showed that GAstV-2 was observed in the cytoplasm of CD4 and CD8 T cells and macrophages, indicating that GAstV-2 can infect both lymphocytes and macrophages. GAstV-2 infection reduced the lymphocyte proliferation induced by Concanavalin A and lipopolysaccharide stimulation and increased the lymphocyte apoptosis rate and mRNA expression of Fas, demonstrating that GAstV-2 causes damage to lymphocytes. Moreover, GAstV-2 infection enhanced phagocytic activity and production of ROS and NO and induced a proinflammatory phenotype in macrophages (M1 macrophages), indicating that macrophages play an antiviral role during GAstV-2 infection. In conclusion, these results demonstrate that GAstV-2 infection causes damages to lymphocytes, and host macrophages inhibit GAstV-2 invasion during infection.


Assuntos
Infecções por Astroviridae , Gansos , Animais , Humanos , Gansos/metabolismo , Espécies Reativas de Oxigênio , Linfócitos/metabolismo , Macrófagos , Infecções por Astroviridae/veterinária , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia
2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38483185

RESUMO

Betaine is widely used as a feed additive in the chicken industry to promote laying performance and growth performance, yet it is unknown whether betaine can be used in geese to improve the laying performance of goose breeders and the growth traits of offspring goslings. In this study, laying goose breeders at 39 wk of age were fed basal (Control, CON) or betaine-supplemented diets at low (2.5 g/kg, LBT) or high (5 g/kg, HBT) levels for 7 wk, and the breeder eggs laid in the last week were collected for incubation. Offspring goslings were examined at 35 and 63 d of age. The laying rate tended to be increased (P = 0.065), and the feed efficiency of the breeders was improved by betaine supplementation, while the average daily gain of the offspring goslings was significantly increased (P < 0.05). Concentrations of insulin-like growth factor 2 (IGF-2) in serum and liver were significantly increased in the HBT group (P < 0.05), with age-dependent alterations of serum T3 levels. Concurrently, hepatic mRNA expression of the IGF gene family was significantly increased in goslings derived from betaine-treated breeders (P < 0.05). A higher ratio of proliferating cell nuclear antigen (PCNA)-immunopositive nuclei was found in the liver sections of the HBT group, which was confirmed by significantly upregulated hepatic expression of PCNA mRNA and protein (P < 0.05). Moreover, hepatic expression of thyroxine deiodinase type 1 (Dio1) and thyroid hormone receptor ß (TRß) was also significantly upregulated in goslings of the HBT group (P < 0.05). These changes were associated with significantly higher levels of global DNA 5-mC methylation, together with increased expression of methyl transfer genes (P < 0.05), including betaine-homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT), and DNA (cytosine-5-)-methyltransferase 1 (DNMT1). The promoter regions of IGF-2 genes, as well as the predicted TRß binding site on the IGF-2 gene, were significantly hypomethylated (P < 0.05). These results indicate that gosling growth can be improved by dietary betaine supplementation in goose breeders via epigenetic modulation of the IGF gene family, especially IGF-2, in the liver.


The goose industry plays important roles in economics, cultures, and ecosystems, yet the low laying and growth rates of many indigenous breeds hinders the development of the goose farming. Betaine, an important methyl donor, is commonly used as a feed additive in livestock and poultry to enhance animal growth. Dietary supplementation of betaine in laying hens or gestational sows has been reported to promote the growth of their offspring. Here, we sought to investigate whether and how dietary betaine supplementation affects the growth and development of offspring goslings. In this study, goose breeders, both male and female, were fed a basal diet supplemented respectively with 0, 2.5, or 5 g/kg betaine for 7 wk. Goslings hatched from the breeder eggs of different groups were raised under the same standard condition for assessing the growth performance. Parental betaine increases the growth rate of offspring goslings with decreased DNA methylation on the IGF-2 gene promoter and increased expression of the IGF-2 gene in the liver. These results provide scientific evidence for the inter-generational effect of betaine on gosling growth.


Assuntos
Betaína , Fator de Crescimento Insulin-Like II , Animais , Betaína/farmacologia , Fator de Crescimento Insulin-Like II/genética , Gansos/genética , Gansos/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Óvulo/metabolismo , Suplementos Nutricionais , Fígado/metabolismo , Dieta/veterinária , Galinhas/genética , Galinhas/metabolismo , Epigênese Genética , RNA Mensageiro/metabolismo , Ração Animal/análise
3.
J Agric Food Chem ; 72(10): 5212-5221, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38433387

RESUMO

To investigate the alterations of yolk protein during embryonic development in Wanxi white goose, the egg yolk protein composition at days 0, 4, 7, 14, 18, and 25 of incubation (D0, D4, D7, D14, D18, and D25) was analyzed by two-dimensional gel electrophoresis combined with mass spectrometry. A total of 65 spots representing 11 proteins with significant abundance changes were detected. Apolipoprotein B-100, vitellogenin-1, vitellogenin-2-like, riboflavin-binding protein, and serotransferrin mainly participated in nutrient (lipid, riboflavin, and iron ion) transport, and vitellogenin-2-like showed a lower abundance after D14. Ovomucoid-like were involved in endopeptidase inhibitory activity and immunoglobulin binding and exhibited a higher expression after D18, suggesting a potential role in promoting the absorption of immunoglobulin and providing passive immune protection for goose embryos after D18. Furthermore, myosin-9 and actin (ACTB) were involved in the tight junction pathway, potentially contributing to barrier integrity. Serum albumin mainly participated in cytolysis and toxic substance binding. Therefore, the high expression of serum albumin, myosin-9, and ACTB throughout the incubation might protect the developing embryo. Apolipoprotein B-100, vitellogenin-1, vitellogenin-2-like, riboflavin-binding protein, and serotransferrin might play a crucial role in providing nutrition for embryonic development, and VTG-2-like was preferentially degraded/absorbed.


Assuntos
Gansos , Vitelogeninas , Animais , Vitelogeninas/análise , Gansos/metabolismo , Apolipoproteína B-100/análise , Apolipoproteína B-100/metabolismo , Proteômica , Transferrina , Proteínas do Ovo/química , Desenvolvimento Embrionário , Albumina Sérica/metabolismo , Imunoglobulinas/análise , Miosinas/análise , Miosinas/metabolismo , Gema de Ovo/química
4.
Poult Sci ; 103(4): 103508, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350393

RESUMO

Goose down feather has become one of the most important economical products in the goose breeding industry and it provides several essential physiological roles in birds. Therefore, understanding and regulating the development of skin and feather follicles during embryogenesis is critical for avian biology and the poultry industry. MicroRNAs are known to play an important role in controlling gene expression during skin and feather follicle development. In this study, bioinformatics analysis was conducted to select miR-140-y as a potential miRNA involved in skin and feather follicle development and to predict TCF4 as its target gene. This gene was expressed at significant levels during embryonic feather follicle development, as identified by qPCR and Western blot. The targeting relationship was confirmed by a dual-luciferase assay in 293T cells. Then, the miR-140-y/TCF4 function in dermal fibroblast cells was explored. The results showed that miR-140-y could suppress the proliferation of goose embryonic dermal fibroblast cells (GEDFs) by suppressing the activity of some Wingless-types (Wnt) pathway related genes and proliferation marker genes, while miR-140-y inhibition led to the opposite effect. Similarly, the inhibition of the TCF4 gene results in blocking the proliferation of GEDFs by reducing the activity of some Wnt pathway-related genes. Finally, the co-transfection of miR-140-y inhibitor and siRNA-TCF4 results in a rescue of the TCF4 function and an increase of the Wnt signaling pathway and GEDFs proliferation. In conclusion, these results demonstrated that the miR-140-y-TCF4 axis influences the activity of the Wnt signaling pathway and works as a dynamic regulator during skin and feather follicle development.


Assuntos
MicroRNAs , Via de Sinalização Wnt , Animais , Gansos/genética , Gansos/metabolismo , Galinhas/genética , Plumas , Hungria , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Embrionário , Proliferação de Células/genética
5.
Food Chem ; 443: 138570, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301563

RESUMO

Umami peptides are valuable taste substances due to their exceptional taste and beneficial properties. In this study, purification of fermented goose bone broth was performed using continuous chromatography and sensory analysis, and after identification through nano-LC-MS/MS, four umami peptides were screened out by umami activity prediction and molecular docking, which are VGYDAE, GATGRDGAR, GETGEAGER, and GETGEAGERG derived from collagen. Sensory analysis indicated that they were also umami-enhancing, with thresholds ranging from 0.41 to 1.15 mmol/L, among which GER9 was the best. Combining the results of docking and molecular dynamics simulation, it was known that hydrogen bond and electrostatic interactions were vital in driving the umami formation. Moreover, Glu, Ser, and Asp of umami receptor T1R1/T1R3 were the key residues for the binding between four umami peptides and T1R1/T1R3. These findings provide novel insights into the high-value utilization of goose bones and offer profound theoretical guidance for understanding the umami mechanism.


Assuntos
Gansos , Receptores Acoplados a Proteínas G , Animais , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G/metabolismo , Gansos/metabolismo , Simulação de Dinâmica Molecular , Paladar , Espectrometria de Massas em Tandem , Peptídeos/química
6.
Poult Sci ; 103(3): 103466, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277893

RESUMO

This study analyzed the formation of goose fatty liver due to endoplasmic reticulum stress (ERS) caused by 3 types of sugar. Transcriptome analysis was performed for liver tissues from geese fed a traditional diet (maize flour), geese overfed with traditional diet, and geese overfed with diet supplemented with glucose, fructose, or sucrose. Correlation analysis of the liver tissue transcriptomes showed that differentially expressed genes (DEGs) involved in ERS were significantly negatively correlated with DEGs involved in inflammation response in the sucrose overfeeding group, and significantly positively correlated with the DEGs involved in lipid metabolism in fructose overfeeding group. Goose primary hepatocytes were isolated in vitro and then treated with glucose or fructose. Some were also treated with ERS inhibitor 4-phenylbutyric acid (4-PBA). In the hepatocytes, mRNA expression of X-Box Binding Protein 1 (XBP1), activating transcription factor 6 (AFT6) and glucose-regulated protein 78 (GRP78) genes increased in the two sugar groups (glucose and fructose), but were suppressed by adding 4-PBA. The mRNA expression data, protein kinase contents, and triglyceride (TG) and very low-density lipoprotein (VLDL) concentrations all suggest that ERS regulates lipid deposition induced by glucose and fructose via elevating lipid synthesis, inhibiting fatty acid oxidation, and decreasing lipid transportation. In conclusion, glucose, or fructose cause ERS and then ERS causes lipid deposition in goose primary hepatocytes. Three types of sugar cause lipid accumulation and then lipid accumulation prevents ERS during goose fatty liver formation, which suggests a potential mechanism protects goose livers from ERS. The different sugars may induce lipid deposition in different ways.


Assuntos
Butilaminas , Fígado Gorduroso , Gansos , Animais , Gansos/metabolismo , Açúcares , Galinhas/genética , Fígado Gorduroso/etiologia , Fígado Gorduroso/veterinária , Glucose/metabolismo , Triglicerídeos/metabolismo , Frutose/efeitos adversos , Frutose/metabolismo , RNA Mensageiro/metabolismo , Estresse do Retículo Endoplasmático , Sacarose
7.
Poult Sci ; 103(2): 103280, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042038

RESUMO

Geese evolved from migratory birds, and when they consume excessive high-energy feed, glucose is converted into triglycerides. A large amount of triglyceride deposition can induce incomplete oxidation of fatty acids, leading to lipid accumulation in the liver and the subsequent formation of fatty liver. In the Chaoshan region of Guangdong, China, Shitou geese develop a unique form of fatty liver through 24 h overfeeding of brown rice. To investigate the mechanisms underlying the formation of fatty liver in Shitou geese, we collected liver samples from normally fed and overfed geese. The results showed that the liver size in the treatment group was significantly larger, weighing 3.5 times more than that in the control group. Extensive infiltration of lipid droplets was observed in the liver upon staining of tissue sections. Biochemical analysis revealed that compared to the control group, the treatment group showed significantly elevated levels of total cholesterol (T-CHO), triglycerides (TG), and glycogen in the liver. However, no significant differences were observed in the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), which are common indicators of liver damage. Furthermore, we performed a combined transcriptomic and lipidomic analysis of the liver samples and identified 1,510 differentially expressed genes (DEGs) and 1,559 significantly differentially abundant metabolites (SDMs). The enrichment analysis of the DEGs revealed their enrichment in metabolic pathways, cellular process-related signaling pathways, and specific lipid metabolism pathways. We also conducted KEGG enrichment analysis of the SDMs and compared them with the enriched signaling pathways obtained from the DEGs. In this study, we identified 3 key signaling pathways involved in the formation of fatty liver in Shitou geese, namely, the biosynthesis of unsaturated fatty acids, glycerol lipid metabolism, and glycerophospholipid metabolism. In these pathways, genes such as glycerol-3-phosphate acyltransferase, mitochondrial (GPAM), 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2), diacylglycerol O-acyltransferase 2 (DGAT2), lipase, endothelial (LIPG), lipoprotein lipase (LPL), phospholipase D family member 4 (PLD4), and phospholipase A2 group IVF (PLA2G4F) may regulate the synthesis of metabolites, including triacylglycerol (TG), phosphatidate (PA), 1,2-diglyceride (DG), phosphatidylethanolamine (PE), and phosphatidylcholine (PC). These genes and metabolites may play a predominant role in the development of fatty liver, ultimately promoting the accumulation of TG in the liver and leading to the progression of fatty liver.


Assuntos
Fígado Gorduroso , Transcriptoma , Animais , Gansos/genética , Gansos/metabolismo , Lipidômica , Glicerol/metabolismo , Galinhas/genética , Fígado Gorduroso/genética , Fígado Gorduroso/veterinária , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos
8.
Theriogenology ; 215: 290-301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38118229

RESUMO

Spermidine, a natural polyamine, has been proven antioxidant function, but its pathway and mechanism of action remain unclear. Based on the oxidative stress model by 3-nitropropionic acid (3-NPA), the study explored the pathways by spermidine to rescue oxidative stress via autophagic process in goose granulosa cells by RNA-seq and RNA interference. In transcriptional regulation, in addition to KEGG pathways related to cell proliferation and differentiation, lots of KEGG pathways associated with inflammation, metabolism, and signaling were also significantly enriched in 3-NPA vs. 3-NPA + spermidine treatments. Six key genes (JUN, CD44, KITLG, RND2, BMP4 and KALRN) involved in spermidine-mediated anti-oxidative stress were screened. Furthermore, the experimental results showed that spermidine (80 µmol/L) significantly increased autophagic gene expression in goose granulosa cells, while EP300-siRNA or MAP1S-siRNA also significantly increased autophagic process. The autophagic gene expressions were no difference between EP300-siRNA and EP300-siRNA + spermidine treatments, although spermidine significantly increased autophagic process of granulosa cells compared to MAP1S-siRNA alone. In addition, inhibition of mTOR pathway significantly increased autophagic gene expression, which was further enhanced by spermidine in combined with mTOR inhibitor. These results suggest that spermidine can alleviate oxidative stress by inducing autophagy regulated by EP300, MAP1S and mTOR as well as regulating other independent gene expressions in goose granulosa cells.


Assuntos
Gansos , Espermidina , Feminino , Animais , Gansos/metabolismo , Espermidina/farmacologia , Espermidina/metabolismo , Células da Granulosa/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Estresse Oxidativo , Autofagia , RNA Interferente Pequeno
9.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003565

RESUMO

In poultry, prolactin (PRL) plays a key role in the regulation of incubation behavior, hormone secretion, and reproductive activities. However, previous in vitro studies have focused on the actions of PRL in ovarian follicles of poultry, relying on the use of exogenous or recombinant PRL, and the true role of PRL in regulating ovarian granulosa cell (GC) functions in poultry awaits a further investigation using endogenous native PRL. Therefore, in this study, we first isolated and purified recombinant goose PRL protein (rPRL) and native goose PRL protein (nPRL) using Ni-affinity chromatography and rabbit anti-rPRL antibodies-filled immunoaffinity chromatography, respectively. Then, we analyzed and compared the effects of rPRL and nPRL at different concentrations (0, 3, 30, or 300 ng/mL) on the proliferation and apoptosis of both GCs isolated from goose ovarian pre-hierarchical follicles (phGCs) and from hierarchical follicles (hGCs). Our results show that rPRL at lower concentrations increased the viability and proliferation of both phGCs and hGCs, while it exerted anti-apoptotic effects in phGCs by upregulating the expression of Bcl-2. On the other hand, nPRL increased the apoptosis of phGCs in a concentration-dependent manner by upregulating the expressions of caspase-3 and Fas and downregulating the expressions of Bcl-2 and Becn-1. In conclusion, this study not only obtained a highly pure nPRL for the first time, but also suggested a dual role of PRL in regulating the proliferation and apoptosis of goose GCs, depending on its concentration and the stage of follicle development. The data presented here can be helpful in purifying native proteins of poultry and enabling a better understanding of the roles of PRL during the ovarian follicle development in poultry.


Assuntos
Gansos , Prolactina , Feminino , Animais , Coelhos , Prolactina/farmacologia , Prolactina/metabolismo , Gansos/metabolismo , Células da Granulosa/metabolismo , Aves Domésticas/metabolismo , Proliferação de Células , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
10.
Poult Sci ; 102(12): 103159, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871489

RESUMO

The ovarian circadian clock plays a regulatory role in the avian ovulation-oviposition cycle. However, little is known regarding the ovarian circadian clock of geese. In this study, we investigated rhythmic changes in clock genes over a 48-h period and identified potential clock-controlled genes involved in progesterone synthesis in goose ovarian preovulatory granulosa cells. The results showed that BMAL1, CRY1, and CRY2, as well as 4 genes (LHR, STAR, CYP11A1, and HSD3B) involved in progesterone synthesis exhibited rhythmic expression patterns in goose ovarian preovulatory granulosa cells over a 48-h period. Knockdown of BMAL1 decreased the progesterone concentration and downregulated STAR mRNA and protein levels in goose ovarian preovulatory granulosa cells. Overexpression of BMAL1 increased the progesterone concentration and upregulated the STAR mRNA level in goose ovarian preovulatory granulosa cells. Moreover, we demonstrated that the BMAL1/CLOCK complex activated the transcription of goose STAR gene by binding to an E-box motif. These results suggest that the circadian clock is involved in the regulation of progesterone synthesis in goose ovarian preovulatory granulosa cells by orchestrating the transcription of steroidogenesis-related genes.


Assuntos
Relógios Circadianos , Gansos , Feminino , Animais , Gansos/genética , Gansos/metabolismo , Progesterona/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Regulação da Expressão Gênica , Galinhas/genética , Células da Granulosa/fisiologia , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , RNA Mensageiro/metabolismo , Ritmo Circadiano
11.
Theriogenology ; 210: 244-250, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544046

RESUMO

To investigate the relationship between polyamine metabolism and reproductive hormones in ovarian follicles of Sichuan white geese, follicle polyamine content and reproductive hormone levels and gene expressions related to polyamine metabolism, steroidogenesis and steroid hormone receptors were detected by HPLC, ELISA and RT-qPCR. The results showed that the overall trend of spermidine and spermine levels increased first and then decreased as increasing follicle size, with the highest level in F3 and F5 follicles (P < 0.05). Putrescine and 17ß-estradiol (E2) levels in hierarchical follicles were significantly lower than those in prehierarchical follicles (P < 0.05). Progesterone (P4) first increased and then decreased, with the highest level in the F5 follicle (P < 0.05). The expression levels of estrogen receptor 1 (ER1) showed an overall increase as increasing follicle size (except in F3 follicles), while estrogen receptor 2 (ER2) in hierarchical follicles was significantly lower than that in the prehierarchical follicles (P < 0.05). In addition, the overall expression level of progesterone receptor (PR) decreased, with no significant differences among F1, F2 and F3 follicles (P > 0.05). Yolk putrescine contents were positively correlated with yolk E2 concentrations and PR expression levels (P < 0.05), A significant positive correlation of spermidine levels with yolk P4 concentrations and PR expressions was also observed, as well as the spermine levels with yolk P4 concentrations (P < 0.05). In summary, polyamines were involved in the regulation of follicular development in geese, and this regulation played a role in affecting steroidogenesis and the expression of genes related to hormone receptors.


Assuntos
Gansos , Putrescina , Feminino , Animais , Gansos/metabolismo , Putrescina/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Folículo Ovariano/fisiologia , Progesterona/metabolismo , Estradiol/metabolismo
12.
Poult Sci ; 102(10): 102937, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37494810

RESUMO

The granulosa cells play an important role in the fate of follicular development or atresia in poultry. Fibroblast growth factor 12 (FGF12) is downregulated in atretic follicles and may be involved in regulating granulosa cell survival in previous studies, but its molecular mechanism remains unclear. In this study, FGF12 overexpression and knockdown models of goose granulosa cells were constructed to investigate its function. The downstream expression of the cell cycle pathway was analyzed by qPCR. Granulosa cell proliferative activity and apoptosis were detected by CCK8 and TUNEL. Protein phosphorylation levels of ERK and AKT were measured using Western blotting to analyze the key pathway of FGF12 regulation of granulosa cell proliferation. ERK protein phosphorylation inhibitor was added for further verification. After overexpression of FGF12, cell proliferation activity was increased, the expressions of cell cycle pathway genes CCND1, CCNA2, MAD2, and CHK1 were upregulated, the apoptosis of granulosa cell was decreased, and Caspase 3 gene and protein expression were downregulated. After the knockdown of FGF12, cell proliferation activity decreased, the expression of downstream genes in the cell cycle pathway was downregulated, the apoptosis of granulosa cells was increased, and the Bcl-2 gene and protein were downregulated. Overexpression of FGF12 promoted the synthesis of P4 and upregulates the expression of the STAR gene. Overexpression of FGF12 promoted ERK protein phosphorylation but did not affect AKT phosphorylation. The addition of ERK phosphorylation inhibitors resulted in the elimination of the increase in cell proliferative activity caused by FGF12 overexpression. In conclusion, FGF12 could promote proliferation and inhibit apoptosis of goose granulosa cells by increasing ERK phosphorylation.


Assuntos
Gansos , Genes cdc , Feminino , Animais , Gansos/genética , Gansos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosforilação , Galinhas/genética , Células da Granulosa , Apoptose/genética , Proliferação de Células , Atresia Folicular
13.
Poult Sci ; 102(9): 102879, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37429050

RESUMO

Spermidine have been reported a role in antioxidative, antiaging, and antiinflammatory. Oxidative stress causes granulosa cell (GC) apoptosis, follicular atresia, and impairs poultry reproductive functions. Studies have found that autophagy is the protective mechanism against antioxidant stress and apoptosis in cells. However, the relationship between spermidine-induced autophagy, oxidative stress, and apoptosis in goose GCs remains unclear. In this study, we investigated the autophagy mechanism to mediate spermidine effects on the alleviation of oxidative stress and apoptosis in goose GCs. Follicular GCs were treated with spermidine combination with 3-Nitropropanoic acid (3-NPA), rapamycin (RAPA), and chloroquine (CQ) or with hydrogen peroxide, RAPA, and CQ. Spermidine upregulated the ratio of LC3-II/I, inhibited the accumulation of p62 protein, and induced autophagy. 3-NPA treatment significantly increased ROS production, MDA content, SOD activity, cleaved CASPASE-3 protein expression, and decreased BCL-2 protein expression in follicular GCs. Spermidine inhibited oxidative stress and apoptosis induced by 3-NPA. In addition, hydrogen peroxide-induced oxidative stress was inhibited by spermidine. However, the inhibitory effect of spermidine was eliminated under chloroquine. Our results demonstrated that spermidine relieved oxidative stress and apoptosis of GCs by inducing autophagy, indicating that spermidine has a great potential to maintain proteostasis and sustain granulosa cell viability in geese.


Assuntos
Gansos , Espermidina , Feminino , Animais , Gansos/metabolismo , Espermidina/farmacologia , Espermidina/metabolismo , Peróxido de Hidrogênio/farmacologia , Atresia Folicular , Galinhas/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Apoptose , Células da Granulosa , Autofagia
14.
Poult Sci ; 102(9): 102880, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37419050

RESUMO

The aim of this work was to investigate the effects of dietary vitamin K3 (VK3) supplementation on production performance, egg quality, vitamin K-dependent proteins, and antioxidant properties in breeding geese during the laying period. A total of one hundred twenty 82-wk-old Wulong geese with similar body weights were randomly divided into 6 groups with 4 replicates and 5 geese each (1 male and 4 female). The geese in the control group were fed a basal diet, and the geese in the treatment groups were fed diets supplemented with different levels of VK3 (2.5, 5.0, 7.5, 10.0, and 12.5 mg/kg) for 11 wk. Dietary VK3 supplementation linearly and quadratically increased feed intake, egg mass, egg weight, and egg production (P < 0.05). Increasing VK3 levels linearly and quadratically increased albumen height, shell thickness and Haugh unit of eggs (P < 0.05). VK3 reduced osteocalcin (OC) and uncarboxylated osteocalcin (ucOC) levels in the serum. Dietary VK3 addition linearly decreased serum malondialdehyde (MDA) levels (P < 0.01). There was linear and quadratic effect in the activity of serum total superoxide dismutase (T-SOD) (P < 0.01), and linear effect in serum total antioxidant capacity (T-AOC) (P < 0.01). In conclusion, dietary VK3 supplementation enhanced the production performance, egg quality, vitamin K-dependent proteins, and antioxidant properties in breeding geese during the laying period. The optimal dose of dietary VK3 supplementation was 10.0 mg/kg.


Assuntos
Antioxidantes , Vitamina K 3 , Masculino , Feminino , Animais , Antioxidantes/metabolismo , Gansos/metabolismo , Vitamina K , Osteocalcina , Ração Animal/análise , Galinhas/metabolismo , Óvulo/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária
15.
Poult Sci ; 102(8): 102811, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37300909

RESUMO

White Roman goose (12-wk-old male, N = 30) carcasses were obtained from a local government-inspected slaughter plant at approximately ∼10-min postmortem. Each carcass was individually sealed in a zip-lock bag and chilled immediately in a water bath at 15°C for 1 h. Both sides of Pectoralis major muscles were excised from each carcass and incubated in 30 mM CaCl2 or 30 mM EDTA at 15°C for 5 h. After incubation, calcium-incubated and EDTA-incubated breast muscles were vacuum-packaged individually and stored at 5°C for 72 h. Control samples (without CaCl2 or EDTA incubation) were directly vacuum-packaged and chilled in a water bath at 15°C for 5 h and stored at 5°C for 72 h. Muscle specimens were taken from the left side of breast muscles at 1 h of chilling (∼1-h postmortem) and at 5 h of incubation at 15°C (∼6-h postmortem), as well as 24, 48, and 72 h of aging at 5°C for measuring the activities of calpain-1 and calpain-11 as well as the contents of 80 kDa calpain-1 subunit and desmin. The samples of shear force value and myofibril fragmentation index (MFI) were taken from the right side of breast muscle at 24 h and 72 h of 5°C storage. Our results showed that the decrease of the activities of calpain-1 and calpain-11 and the contents of 80 kDa calpain-1 subunit and desmin was more rapid (P < 0.05) in calcium-incubated samples than in control and EDTA-incubated samples. The shear force was lower, but the MFI was higher in calcium-incubated samples than in control and EDTA-incubated samples (P < 0.05). Therefore, our results suggest that the calpain-mediated proteolysis and tenderization in postmortem goose muscle could be greatly enhanced by combine effects of stepwise chilling with calcium incubation at 15°C and thereafter aging at 5°C. With applying this procedure, commercial slaughter plants may have an alternative way to improve the tenderness of goose meat.


Assuntos
Calpaína , Gansos , Animais , Proteólise , Calpaína/metabolismo , Gansos/metabolismo , Cálcio/metabolismo , Músculo Esquelético/fisiologia , Ácido Edético/farmacologia , Ácido Edético/metabolismo , Cloreto de Cálcio/metabolismo , Desmina/metabolismo , Mudanças Depois da Morte , Galinhas/metabolismo , Cálcio da Dieta/metabolismo , Carne/análise , Água/metabolismo
16.
Poult Sci ; 102(7): 102727, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37148571

RESUMO

This study investigated the effects of dietary arginine supplementation on the production performance, serum biochemicals, antioxidant capacity, and immunity of laying Wulong geese. A total of 150 Wulong geese (34-wk old) with similar body weights were randomly divided into 6 groups with 5 replicates and 5 geese each (1 male and 4 female). The geese in the control group were fed a corn-rapeseed meal basal diet, and the geese in the treatment groups were fed the basal diet supplemented with 0.1, 0.2, 0.3, 0.4, and 0.5% arginine. The experiment lasted for 17 wk. Our results showed that dietary arginine increased the egg production rate (LR) and average egg weight (AEW) of geese in a quadratic manner (P < 0.05). Dietary arginine had a quadratic effect on the contents of total protein (TP) and triglyceride (TG) (P < 0.05) in the serum. Dietary arginine quadratically decreased the content of malondialdehyde (MDA) and increased the activity of total superoxide dismutase (T-SOD) (P < 0.05). Dietary arginine supplementation linearly and quadratically increased the contents of immunoglobulin A (IgA) and immunoglobulin G (IgG), and linearly increased the content of nitric oxide (NO) (P < 0.05). In conclusion, dietary arginine supplementation can significantly improve the production performance, serum biochemicals, antioxidant capacity, and immunity of laying Wulong geese. Therefore, 0.3% arginine (actual content: 1.02%) is recommended in the diet.


Assuntos
Antioxidantes , Gansos , Masculino , Feminino , Animais , Antioxidantes/metabolismo , Gansos/metabolismo , Arginina , Ração Animal/análise , Galinhas/metabolismo , Suplementos Nutricionais , Dieta/veterinária
17.
J Sci Food Agric ; 103(11): 5442-5451, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37038913

RESUMO

BACKGROUND: The reduction of protein oxidation is important for maintaining the product quality of reconstituted meat. In this study, the dose-dependent effects of lentinan (LNT) on gelling properties and chemical changes in oxidatively stressed goose myofibrillar protein were investigated. RESULTS: Myofibrillar protein (MP) with 200 µmol g-1 protein LNT increased gel strength by 87.90 ± 9.26% in comparison with LNT-free myofibrillar protein after oxidation. Scanning electron microscopy analysis revealed that the gel network containing LNT was compact, with small pores and uniform distribution. The absolute value of the zeta potential reduced significantly following oxidation of LNT with 200 µmol g-1 protein at 4 °C for 12 h compared with the zeta potential without LNT, according to the laser particle size analyzer. The incorporation of LNT increased protein solubility and -SH content, inhibited carbonyl formation, enhanced α-helix content and tryptophan intrinsic fluorescence intensity, and reduced exposure of hydrophobic groups and protein aggregation. CONCLUSION: The results indicated that adding LNT to myofibrillar protein could improve gel. This is related to its protective effect on conformational changes in the oxidation system. Lentinan is therefore recommended for oxidatively stressed goose meat processing to enhance the MP gelling potential. © 2023 Society of Chemical Industry.


Assuntos
Gansos , Proteínas Musculares , Animais , Proteínas Musculares/química , Gansos/metabolismo , Lentinano , Estresse Oxidativo , Carne/análise , Géis/química
18.
Genes (Basel) ; 14(4)2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-37107573

RESUMO

The incubation behavior of geese seriously affects their egg production performance. Studies on incubation behavior have identified functional genes, but the regulatory architecture relationship between functional genes and chromatin accessibility remains poorly understood. Here, we present an integrated analysis of open chromatin profiles and transcriptome to identify the cis-regulatory element and their potential transcription factors involved in regulating incubation behavior in goose pituitary. Assay for transposase-accessible chromatin sequencing (ATAC-seq) revealed that open chromatin regions increased in the pituitary during the transition from incubation behavior to laying. We identified 920 significant differential accessible regions (DARs) in the pituitary. Compared to the laying stage, most DARs had higher chromatin accessibility in the brooding stage. Motif analysis of open DARs showed that the most significant transcription factor (TF) occupied sites predominantly enriched in motifs binding to the RFX family (RFX5, RFX2, and RFX1). While the majority of TF motifs enriched under sites of the nuclear receptor (NR) family (ARE, GRE, and PGR) in closed DARs at the incubation behavior stage. Footprint analysis indicated that the transcription factor RFX family exhibited higher binding on chromatin at the brooding stage. To further elucidate the effect of changes in chromatin accessibility on gene expression levels, a comparison of the transcriptome revealed 279 differentially expressed genes (DEGs). The transcriptome changes were associated with processes of steroid biosynthesis. By integrating ATAC-seq and RNA-seq, few DARs directly affect incubation behavior by regulating the transcription levels of genes. Five DAR-related DEGs were found to be closely related to maintaining the incubation behavior in geese. Footprinting analysis revealed a set of transcription factors (RFX1, RFX2, RFX3, RFX5, BHLHA15, SIX1, and DUX) which displayed the highest activity at the brooding stage. SREBF2 was predicted to be the unique differentially expressed transcription factor whose mRNA level was down-regulated and enriched in hyper-accessible regions of PRL in the broody stage. In the present study, we comprehensively profiled the transcriptome and chromatin accessibility in the pituitary related to incubation behavior. Our findings provided insight into the identification and analysis of regulatory elements in goose incubation behavior. The epigenetic alterations profiled here can help decipher the epigenetic mechanisms that contribute to the regulation of incubation behavior in birds.


Assuntos
Cromatina , Transcriptoma , Animais , Cromatina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Gansos/genética , Gansos/metabolismo , Perfilação da Expressão Gênica
19.
Theriogenology ; 205: 94-105, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105092

RESUMO

Physiological mechanisms of seasonal changes in testicular function in birds are not fully elucidated. The balance between androgens and estrogens and testis sensitivity for gonadotropin and gonadal steroids are still unclear. The aim of the study was to examine: (1) the changes in circulating and intra-testicular steroid hormone levels and their relationship; (2) the mRNA expression of testicular gonadotropin, prolactin (PRL), progesterone (P4), androgen, and estrogen receptors, and (3) key steroidogenesis processes-related genes with immunofluorescent localization of aromatase in gander testes during the annual period. Testes from ganders (n = 25) in the first reproduction season were obtained at five breeding stages, i.e., prebreeding (PrB), peak of reproduction (PR), postbreeding (PoB), nonbreeding (NB), and onset of reproduction (OR). Males were kept under breeding conditions. It was found that plasma P4 levels decreased at the PoB and NB stages, whereas intra-testicular P4 was the highest in the NB stage. Intra-testicular estradiol (E2) levels were higher at the PoB and NB stages than the other stages, whereas testosterone (T) levels showed a nearly opposite pattern. The plasma estradiol-to-testosterone ratios were higher at the PrB, PoB and NB stages compared to other stages. The transcript abundances for luteinizing hormone receptor (LHR), PRL receptor (PRLR), estrogen receptor alpha (ERα), and estrogen receptor beta (ERß) also change in testicular tissue during the annual period. Moreover, StAR mRNA expression was upregulated at the PoB and NB stages, and CYP11A1 transcript level was the highest at the PoB stage. Stage-dependent changes in the CYP19A1 mRNA and aromatase protein levels with higher abundances of transcript at PoB and NB stages and protein at the NB stage were observed. Localization and immunofluorescent signal intensity for aromatase also differed in relation to the examined stages. It may be suggested that differential E2 levels, as well as aromatase expression and localization across annual stages are responsible for the seasonal activation/inactivation stages of testis spermatogenesis in domestic ganders. These data strongly suggest a role of aromatase in the control of gander steroidogenesis as changes in this enzyme level are associated with alternation in gonadal steroid hormones. In addition, joint action with others hormones, like PRL and LH, seems to be important in the final effect of seasonal reproduction potential.


Assuntos
Receptores de Estrogênio , Testículo , Animais , Masculino , Androgênios/metabolismo , Aromatase/genética , Aromatase/metabolismo , Estradiol , Expressão Gênica , Hormônios Esteroides Gonadais/metabolismo , Prolactina , Receptores de Estrogênio/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Testículo/metabolismo , Testosterona , Gonadotropinas/metabolismo , Esteroides/biossíntese , Gansos/genética , Gansos/metabolismo
20.
Poult Sci ; 102(5): 102204, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37003171

RESUMO

This study aimed to investigate whether the developmental changes in glucose metabolism were associated with insulin signaling in the middle and later stages of goose embryos. Serum and liver were sampled on embryonic day 19, 22, 25, 28, and day of hatchment, with 30 eggs at each sampling time point, and 6 replicates of 5 embryos. The embryonic growth traits, serum glucose, hormone levels, and the hepatic mRNA expressions of target genes related to glucose metabolism and insulin signaling were measured at each time point. Relative body weight, relative liver weight, and relative body length decreased linearly and quadratically from embryonic day 19 to day of hatchment, while relative yolk weight decreased linearly from embryonic day 19 to day of hatchment. Serum glucose, insulin, and free triiodothyronine levels increased linearly with increasing incubation time, while no differences were observed in serum glucagon and free thyroxine levels. The hepatic mRNA expression related to glucose catabolism (hexokinase, phosphofructokinase, and pyruvate kinase) and insulin signaling (insulin receptor, insulin receptor substrate protein, Src homology collagen protein, extracellular signal-regulated kinase, and ribosomal protein S6 kinase, 70 ku) increased quadratically from embryonic day 19 to day of hatchment. The expression of citrate synthase and isocitrate dehydrogenase mRNA decreased linearly and quadratically respectively from embryonic day 19 to day of hatchment. Serum glucose levels were positively related to serum insulin (r = 1.00) and free triiodothyronine (r = 0.90) levels, as well as the hepatic mRNA expression of insulin receptor (r = 1.00), insulin receptor substrate protein (r = 0.64), extracellular signal-regulated kinase (r = 0.81), and ribosomal protein S6 kinase, 70 ku (r = 0.81) related to insulin signaling. In conclusion, glucose catabolism was enhanced and had positive correlations with the insulin signaling in the middle and later stages of geese embryogenesis.


Assuntos
Gansos , Insulina , Animais , Insulina/metabolismo , Gansos/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Tri-Iodotironina , Proteínas Substratos do Receptor de Insulina/metabolismo , Galinhas/genética , Óvulo/metabolismo , Fígado/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Glucose/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...